
1Fujitsu Technical Review

Supercomputer Fugaku CPU A64FX Realizing
High Performance, High-Density Packaging,
and Low Power Consumption

Ryohei Okazaki Takekazu Tabata Sota Sakashita Kenichi Kitamura
Noriko Takagi Hideki Sakata Takeshi Ishibashi Takeo Nakamura
Yuichiro Ajima

1. Introduction
The A64FX (Figure 1) was developed as a proces-

sor for the supercomputer Fugaku (hereafter, Fugaku).
Fugaku features 158,976 processors [2]. These proces-
sors require high performance, high-density packaging,
and low power consumption, all at high levels. The
software development environment is also important.

This article outlines the A64FX and describes its
high-performance microarchitecture, architecture to
achieve high-density packaging, and low power con-
sumption design.

2. A64FX overview and adoption of Arm
architecture
For the A64FX, we decided to work on devel-

opment with the aim of achieving the capability of
higher-speed application execution based on the mi-
croarchitectures of processors developed by Fujitsu up
to now, including the processor of the K computer.

In order to accelerate application performance, we
analyzed various applications and optimized the entire
processor, revising the configuration of various blocks,
optimizing resources, adding new circuits, selecting
and optimizing memory components, and optimizing
OS operations. In addition, we implemented measures
to save power across a wide range of levels from the

architecture to the device level with the aim of providing
a system that uses the A64FX, a general-purpose CPU,
with the capability of achieving performance per power
equivalent to that of a system equipped with a GPU.

Figure 2 shows a block diagram of the A64FX
CPU [3]. There are four core memory groups (CMGs),
each of which is composed of 13 cores (12 used as
computing cores and one as an assistant core), level 2
cache and memory controller, and a ring bus network
on a chip (NoC) is used to connect them with the Tofu
Interconnect D (hereafter, TofuD) [4] interface and PCI
Express (PCIe) interface.

In developing the A64FX, the Arm architecture
was adopted with the aim of having the supercomputer
Fugaku accepted by a wider range of software develop-
ers than the K computer, which saw a full-scale launch
in 2012, and putting in place an environment allowing
use of the latest software. The Arm architecture is an in-
struction set developed by Arm Limited (hereafter, Arm)
widely used in software development for smartphones
and embedded devices. Recently, Arm processors for
servers have appeared by extension to a 64-bit archi-
tecture, which is the standard in the server sector, and
new addition of the hypervisor extension feature for
servers. These developments have raised expectations
for expansion of Arm into the server sector.

The A64FX was developed as a processor for the supercomputer Fugaku. For the semiconduc-
tors, the 7- nm CMOS process technology of TSMC [1] has been used. For higher density, the
Tofu interconnect D and the PCI Express controllers have been implemented in the CPU chip,
and the high-bandwidth 3D stacked memory is integrated in the package. The A64FX employs
the Arm architecture to improve the software development environment while inheriting
Fujitsu’s proven high-performance microarchitecture. In addition, we worked on the specifica-
tion of Scalable Vector Extension (SVE) as a lead partner of Arm Limited, the result of which has
been adopted. This article outlines the A64FX and describes its high-performance microarchi-
tecture, architecture to achieve high-density packaging, and low power consumption design.

2

Supercomputer Fugaku CPU A64FX Realizing High Performance, High-Density Packaging, and Low Power Consumption

Fujitsu Technical Review

In offering the Arm architecture as a proces-
sor for high-performance computing (HPC), single
instruction, multiple data (SIMD) extension, a unique
feature of the Arm architecture, became an issue. This
SIMD extension, known as the Advanced SIMD, is used
for accelerating media processing and digital signal

processing (DSP) for embedding and other applica-
tions. The SIMD length is 128 bits, the same as the K
computer. This is shorter than 256 bits and 512 bits,
the current trends for HPC CPUs, and was unsuitable
for improving the computing performance per core. In
addition, based on Fujitsu’s past experience in HPC de-
velopment, instructions useful for the HPC applications
were also insufficient.

Therefore, by collaborating with Arm, Fujitsu
contributed as a lead partner to the specification of
Scalable Vector Extension (SVE) capable of high-speed
execution of HPC applications including scientific com-
puting and AI, the result of which has been adopted for
the A64FX.

3. High-performance microarchitecture
With the A64FX, microarchitecture exclusively for

Fugaku was developed with the aim of speeding up the
execution of user applications. This section outlines the
microarchitecture and describes the elemental technol-
ogy utilized to make it a reality.

Figure 2
Block diagram of A64FX CPU.

HBM2

PCIe
Controller

TofuD
Controller

Core

HBM2

HBM2

HBM2

CMG

Core x 13

HBM2: High Bandwidth Memory 2

Ri
ng

 B
us

Figure 1
Die photo of A64FX CPU.

TofuD Interface PCIe Interface

Core

Level 2 Cache

Ring Bus

HBM2 Interface

3

Supercomputer Fugaku CPU A64FX Realizing High Performance, High-Density Packaging, and Low Power Consumption

Fujitsu Technical Review

3.1 Microarchitecture overview
Figure 3 shows the pipeline of the A64FX [3]. A

core is composed of the instruction control unit, execu-
tion unit, and level 1 cache unit. The instruction control
unit performs instruction fetch, instruction decode,
instruction out-of-order processing control, and instruc-
tion completion control.

The execution unit is equipped with two fixed-
point functional units (EXA/EXB), two functional units
for address computation and simple fixed-point arith-
metic (known as EAGA/EAGB for address calculation
and EXC/EXD for fixed-point arithmetic), two floating-
point units for executing SVE instructions (FLA/FLB),
and one predicate unit for executing predicate arith-
metic (PRX). Both floating-point units have a 512-bit
SIMD configuration and can perform a floating-point
multiply-accumulate operation every cycle. Therefore,
each computing core is capable of 32 double-precision
floating-point operations per cycle and use of all com-
puting cores in the chip allows 1,536 double-precision
floating-point operations to be performed per cycle.
With single-precision floating-point operations and
half-precision floating-point operations, the number of
operations that can be performed is twice and four times
the number of double-precision floating-point opera-
tions, respectively. It operates at 1.8 GHz/2 GHz/2.2 GHz,

although the operating frequency varies depending on
the system in which it is installed.

The level 1 cache unit processes load/store in-
structions. Each core has a 64-KiB instruction cache
and a 64-KiB data cache. The data cache is configured
to be capable of two simultaneous load accesses and
executes two 64-byte SIMD loads or one 64-byte SIMD
store.

The level 2 cache unit has 8 MiB of unified cache
per CMG and is shared by 13 cores including the assis-
tant core.

3.2 Proven microarchitecture and resource
optimization
For the A64FX, we have implemented various

types of hardware resource optimization based on the
high-performance, high-reliability microarchitecture
adopted in mainframe, and UNIX servers, and the K
computer, which Fujitsu previously developed.

In particular, for the numbers of reorder buffer
(ROB), reservation station, and other queues, which
are important as performance indicators, we have ad-
opted control to accelerate the release by judging the
release timing of the queue at the time of instruction
execution. This ensures the instruction execution per-
formance without unnecessarily increasing the number

Figure 3
Diagram of A64FX pipeline.

Level 1
instruction

cache

Branch
prediction

Instruction
decode

Reservation
station for

execution 0

Reservation
station for

address
generation

Reservation
station for

execution 0

Reservation
station for

branch

Fixed point
register

EXA
EXB

EAGA
EXC

EAGB
EXD

Floating
point register

Fetch port

Store port Level 1
data cache

HBM2 controller

Fetch Decode Issue Register read Execution Memory access

Commit
control unit

Completion

Program
counter

Control
register

Level 2 cache

HBM2

Write
buffer

TofuD controller

TofuD

52 cores

FLA

Predicate
register

FLB

PRX

PCI-GEN3

PCIe controller

Level 1 cache unitLevel 1
cache unit

Instruction
control unit

Execution unit Instruction
control unit

4

Supercomputer Fugaku CPU A64FX Realizing High Performance, High-Density Packaging, and Low Power Consumption

Fujitsu Technical Review

of queue entries, which reduces the chip area by curb-
ing the increase of logic circuits.

3.3 Branch prediction circuits
We have employed several branch prediction

circuits so that optimum branch prediction can be per-
formed with various applications.

For example, we have employed a circuit that uses
a piecewise linear algorithm to perform branch predic-
tion. This allows for high-accuracy branch prediction
capability even with a program that has a compli-
cated instruction structure. As a result, it is possible
to perform branch prediction based on an instruction
execution history for a long time, and high prediction
accuracy can be realized.

We have also adopted a circuit capable of branch
prediction by detecting a simple loop or other program
structure. By buffering the loop instruction sequence
while the program is looping, operation of the instruc-
tion fetch unit and other branch prediction circuits is
stopped to reduce power.

3.4 Virtual fetch/store port circuit
A fetch/store port used in load/store instructions

is a queue located in the later stage of the pipeline.
Therefore, several cycles are required from the release
notification to the decoder unit that manages the re-
source to the actual use of the released entries. When
the resource is full, decoding of instructions including
those that do not use the fetch/store port stops and
some measures were required to deal with SVE instruc-
tions, which use many fetch/store ports.

To resolve this issue, we decided to provide the
A64FX with the support of the virtual fetch/store port func-
tion to improve the use efficiency of fetch/store ports with
the minimum circuit scale for improving performance.

Previously, the instruction decoder was used for
fetch/store port resource management. With the A64FX,
however, we have allocated a larger number of virtual
fetch/store ports than that of the actual fetch/store
ports for the instruction decoder and assigned resource
management of the fetch/store ports to the reserva-
tion station used for load/store-based instructions. This
prevents instruction decoding from being stopped even
when all fetch/store ports are in use, which has proved
to provide an effect equivalent to increasing the num-
ber of fetch/store port entries.

3.5 Level 1 data cache to support various
access patterns
In order to maximize the efficiency of 512-bit

SIMD, it is important to maintain the access throughput
of the L1 data cache in load instructions that transfer
data to registers. When load instructions with addresses
not on 512-bit boundaries are sequentially executed in
the order of address, access across cache lines occurs
once in several instructions. To avoid performance deg-
radation in this case, the L1 data cache of the A64FX
is configured to allow each of the two lead ports to
always access two consecutive cache lines. Thus, even
when a load instruction accesses across a cache line,
a throughput of 512 bits x 2 is maintained every cycle.

3.6 Accelerate throughput performance of
gather-load instruction
A gather-load instruction reads discontinuous

multiple-element data from the memory and writes
it to one register. Although the data are discontinu-
ous, with HPC applications, it has been made clear
that data have locality, as in multiple elements ac-
cessing close addresses. Based on this feature, a
accelerate mechanism called combined gather has
been employed for the A64FX. The combined gather
mechanism disassembles a gather-load instruction
into groups of two elements instead of processing the
elements one by one. When the elements belong-
ing to the same group access the memory within the
same 128-byte boundary, the process is completed
by one cache access. As a result, double throughput
performance has been realized in comparison with
processing one element at a time.

3.7 Prefetch mechanism
Accessing the main storage and a lower-level

cache requires a significant amount of time and. To
improve the program performance, prefetching is im-
portant to hide the access time. Methods of realizing
prefetching can be roughly classified into software-
based and hardware-based methods.
1) Software prefetch

The A64FX supports the SVE contiguous prefetch
instruction and the SVE gather prefetch instruction of
SVE in addition to the ARMv8 prefetch instruction, the
normal prefetch instruction. As a result, a prefetch over
multiple cache lines is also issued by one instruction.

5

Supercomputer Fugaku CPU A64FX Realizing High Performance, High-Density Packaging, and Low Power Consumption

Fujitsu Technical Review

2) Hardware prefetch
The hardware prefetch mechanism of the A64FX

has two modes: the stream detect mode and the
prefetch injection mode.

In the stream detect mode, prefetches are issued
for sequential access. It uses a special mechanism
called a prefetch queue to monitor memory access and,
when a sequential access stream is detected, prefetches
are issued in the direction of the address sequence.

In the prefetch injection mode, prefetches are
issued for addresses at a certain distance from the
memory access. Programs using this mode can issue
prefetches for strided access to access addresses at a
certain distance by setting information on prefetch
addresses in advance in a dedicated prefetch control
register.

4. High-density architecture
To achieve higher density, the A64FX—which is

a system on a chip (SoC) integrating various control-
lers—has four high bandwidth memories (HBM2) in
the package. Each of the four CMGs is connected to

the respective HBM2 to ensure low latency and high
bandwidth.

4.1 CMG configuration and ccNUMA
Figure 4 shows the CMG configuration and a con-

nection diagram [5]. The CMG is composed of 13 cores,
a level 2 cache shared by those cores, and a memory
controller.

The capacity of the level 2 cache is 8 MiB per CMG,
and two level 2 cache banks and 13 cores are con-
nected by crossbars. The level 2 cache has a function
to guarantee the cache coherence of the entire chip so
that the software can treat the CMG as a non-uniform
memory access (NUMA) node.

Cache coherence in the A64FX is centrally man-
aged by a level 2 cache pipeline without using a
general home agent mechanism. The level 2 cache
pipeline consists of one pipeline: the first half is called
the local pipeline and the second half the global pipe-
line. The directory information for managing cache
coherence between CMGs is stored in a part called TAG
Directory (TAGD) and accessed in the global pipeline. If

Figure 4
Diagram of CMG configuration and connection.

Level 2
cache bank #0

Core Core Core Core Core Core Core Core
Assis-
tant
core

CoreCoreCoreCore

256 GB/s

>57 GB/s

>115 GB/s

Level 2
cache bank #1

>57 GB/s

Memory read (2 banks)
>115 GB/s

>57 GB/sMemory write
>57 GB/s

CMG

Crossbar

Crossbar

>57 GB/s

>57 GB/sH
BM

2

M
em

or
y

co
nt

ro
lle

r

Ro
ut

er
 In

te
rfa

ce

6

Supercomputer Fugaku CPU A64FX Realizing High Performance, High-Density Packaging, and Low Power Consumption

Fujitsu Technical Review

coherence management closed in the CMG is possible,
response to the cores is initiated at the end of the local
pipeline and, if not, coherence management between
CMGs is initiated at the end of the global pipeline
that follows. This configuration reduces the hardware
resources requirement and realizes a low-latency
cache-coherent NUMA (ccNUMA) system.

4.2 SoC architecture
Figure 5 shows connections between CMGs [4].

Four CMGs, a TofuD/PCIe controller and an interrupt
controller are connected by two ring buses and six
ring stops. The A64FX also employs a proprietary NoC
topology with CMG interconnect paths for connect-
ing between adjacent CMGs. The throughput of the
ring buses and CMG interconnect paths is more than
115 GB/s each.

Provision of the CMG interconnect paths makes it
possible to avoid the effect of use of ring buses due to
data transfer with TofuD network and I/O, and interrupt
requests from the interrupt controller, etc. It also realizes

a configuration with a smaller number of connections
between blocks than use of a crossbar, ensuring the
throughput performance between adjacent CMGs.

4.3 HBM2 and memory controller
The A64FX uses HBM2, which is a 3D stacked

memory with much higher bandwidth than DDR4
DIMMs used in general servers. The memory controller
developed exclusively for HBM2 is housed in the pro-
cessor and the CPU chip and HBM2 are integrated into
a single package using the 2.5D packaging technology
to ensure low latency and high memory bandwidth
of 1,024 GB/s. With the memory controller developed
exclusively for HBM2, we have optimized the control
method to maximize the performance in accordance
with the characteristics of HBM2 memory while ensur-
ing strong reliability equivalent to that of a mainframe.

4.4 TofuD and PCIe controllers
As external input/output interfaces, the A64FX

has a TofuD for realizing a massively parallel system by
mutually connecting CPUs and a PCIe bus for connecting
I/O devices. The TofuD has 20 lanes of high-speed serial
signals of 28-Gbps transmission speed and interconnects
up to 10 CPUs with a bandwidth of 6.8 GB/s. The PCIe has
16 lanes of high-speed serial signals of 8-Gbps transmis-
sion speed and the bandwidth is 16 GB/s.

Figure 6 shows a block diagram of TofuD. The
TofuD has six network interfaces called TNIs and in-
terconnects with 10 CPUs through a network router.

Figure 5
Diagram of connections between CMGs.

CMG interconnect path

Ring stop

Ring stop

Ring stop

Interrupt controller

TofuD
PCIe

CMG
#3

CMG
#2

CMG
#0

Ring stop

Ring stop

Ring stop

CMG
#1

Shared ring bus
>115 GB/s

Figure 6
Block diagram of TofuD.

PCIe Controller

Tofu Network
Interface 0

NoC

CMG

CMG

CMG

CMG

To
fu

 N
et

w
or

k
Ro

ut
er

Tofu Network
Interface 1

Tofu Network
Interface 2

Tofu Network
Interface 3

Tofu Network
Interface 4

Tofu Network
Interface 5

In
te

rc
on

ne
ct

 to
 o

th
er

 C
PU

s

7

Supercomputer Fugaku CPU A64FX Realizing High Performance, High-Density Packaging, and Low Power Consumption

Fujitsu Technical Review

The network of TofuD has a 6D mesh/torus topology
as with the K computer [6-8]. While the node address
of the network is physically 6D, a user process is given
virtual 3D coordinates to allow use of a conventional
communication algorithm for 3D connection. As with
the K computer, the communication function of the
TofuD is also equipped with remote direct memory ac-
cess (RDMA) communication and barrier-synchronized
communication as the functions that can be used
directly from a user process and system packet com-
munication as the function used by the system for IP
packet transfer. In terms of the types of RDMA commu-
nication, atomic read-modify-write, which is extended
by Tofu2 [9] after the K computer, is supported in ad-
dition to put and get in the same way as with the K
computer. The RDMA communication of Tofu has its
own virtual storage and transfers data directly between
the virtual address spaces of user processes managed
by the OS of the respective nodes. Each data transfer
is assigned a global process ID and is protected to refer
only to processes executed by the same parallel pro-
gram. In comparison with the conventional K computer
and Tofu2, TofuD has a greater number of simultane-
ous communications and enhanced fault tolerance and
barrier-synchronized communication. The following
describes the respective enhancements.
1) Roughly twice as much total communication

bandwidth
Most collective communication algorithms opti-

mized for 3D connections communicate simultaneously
in six directions in three dimensions. However, the
number of network interfaces was conventionally four
and simultaneous communication was possible in
only up to four directions. With TofuD, the number of
network interfaces has been increased to six, which
has allowed a communication algorithm to be used
that realizes high bandwidth by simultaneously com-
municating in three directions in three dimensions. The
total bandwidth of simultaneous communication has
been enhanced from 20 GB/s with the K computer to
40.8 GB/s.
2) High fault tolerance

With the K computer, errors were detected for
each link to the adjacent node and the data was
retransmitted. In addition, a link with high error detec-
tion frequency was disconnected. With Tofu2, a link
that was disconnected was subsequently automatically

reconnected with the number of the lanes reduced to
half. If the number was already reduced to half, the
link was reconnected by using different lanes, but no
means was implemented to automatically recover the
number of lanes.

In contrast, TofuD has been equipped with a
function for reducing the bandwidth when the error
detection frequency is high and restoring the reduced
bandwidth when the error detection frequency is re-
duced. Specifically, when the error detection frequency
is high, the function transfers the same data by two
lanes while maintaining the link to improve fault toler-
ance. And when the error detection frequency is low, it
restores the mode of using the lanes to transfer differ-
ent data to recover the bandwidth.
3) Six barrier-synchronized communications

Along with the introduction of CMGs, the number
of resources for barrier-synchronized communication
have been increased to expand the number of con-
traction operation elements. While one of the four
network interfaces was conventionally used for bar-
rier-synchronized communication, with TofuD, all six
network interfaces perform barrier-synchronized com-
munication. Conventionally, contraction operation was
possible for one element per barrier synchronization,
regardless of data type. But with TofuD, contraction op-
eration is possible for eight integer elements or three
floating point number elements.

5. Low power consumption design
In terms of low power consumption, measures

have been taken to save power across a wide range of
levels from the architecture level to the device level.

5.1 Architecture-level power saving
Most of the application operations can now be lo-

calized in a CMG by grouping the computing cores and
directly connecting the memory to each group and by
avoiding process mapping across groups. As a result,
the average distance travelled by data is shortened,
leading to reduced power.

5.2 Circuit-level power saving
In order to support 512-bit SIMD, the access

method of the level 1 data cache was reviewed. Since
throughput is more dominant than latency in the per-
formance of applications that heavily use SVE vector

8

Supercomputer Fugaku CPU A64FX Realizing High Performance, High-Density Packaging, and Low Power Consumption

Fujitsu Technical Review

load, SVE load instructions employ a scheme that can
significantly reduce power when accessing the level 1
data cache by slightly increasing latency.

We also reviewed the data forwarding circuit in
the arithmetic pipeline and added a circuit to reduce
power consumption by reducing reference to the regis-
ter file with large power consumption.

6. Conclusion
This article described the high performance, high-

density packaging, and low power consumption design
of the A64FX.

The A64FX was developed with the aim of sig-
nificantly improving the performance per power of a
wide range of applications. Fujitsu has moved ahead
with co-design together with the RIKEN Center for
Computational Science. Different teams for processor de-
velopment, system development, software development,
compiler development, and performance evaluation
have collaborated closely to successfully develop new
technologies, advance conventional technologies, and
achieve the goal.

We expect that the supercomputer Fugaku will
contribute to the resolution of issues in various fields
in the future and that the A64FX will be accepted by a
wide range of software developers to accelerate DX.

All company and product names mentioned herein are trademarks or
registered trademarks of their respective owners.

References and Notes
[1] Taiwan Semiconductor Manufacturing Company, Ltd.
[2] RIKEN: Fugaku System Configuration.

https://postk-web.r-ccs.riken.jp/spec.html
[3] T. Yoshida: Fujitsu High Performance CPU for the Post-K

Computer, Hot Chips 30 (2018).
https://www.fujitsu.com/jp/Images/
20180821hotchips30.pdf

[4] Y. Ajima et al.: The Tofu Interconnect D. IEEE International
Conference on Cluster Computing, pp. 646–654 (2018).

[5] S. Yamamura: A64FX High Performance CPU Design,
Cool Chips 22 (2019).

[6] Y. Ajima: High-dimensional Interconnect Technology for
the K Computer and the Supercomputer Fugaku. Fujitsu
Technical Review (2020).
https://www.fujitsu.com/global/about/resources/
publications/technicalreview/topics/article005.html

[7] Y. Ajima et al.: Tofu: A 6D Mesh/Torus Interconnect for
Exascale Computers. IEEE Computer, Vol. 42, No. 11,
pp. 36–40 (2009).

[8] Y. Ajima et al.: The Tofu Interconnect. IEEE 19th Annual
Symposium on High Performance Interconnects, pp.
87–94 (2011).

[9] Y. Ajima et al.: The Tofu Interconnect 2. IEEE 22nd
Annual Symposium on High Performance Interconnects,
pp. 57–62 (2014).

Noriko Takagi
Fujitsu Limited, Platform Development
Division
Ms. Takagi is engaged in processor
development.

Ryohei Okazaki
Fujitsu Limited, Platform Development
Division
Mr. Okazaki is engaged in processor
development.

Sota Sakashita
Fujitsu Limited, Platform Development
Division
Mr. Sakashita is engaged in processor
development.

Takekazu Tabata
Fujitsu Limited, Platform Development
Division
Mr. Tabata is engaged in processor
development.

Kenichi Kitamura
Fujitsu Limited, Platform Development
Division
Mr. Kitamura is engaged in processor
development.

https://postk-web.r-ccs.riken.jp/spec.html
https://www.fujitsu.com/jp/Images/20180821hotchips30.pdf
https://www.fujitsu.com/jp/Images/20180821hotchips30.pdf
https://www.fujitsu.com/global/about/resources/publications/technicalreview/topics/article005.html
https://www.fujitsu.com/global/about/resources/publications/technicalreview/topics/article005.html

9

Supercomputer Fugaku CPU A64FX Realizing High Performance, High-Density Packaging, and Low Power Consumption

©2020 FUJITSU LIMITED Fujitsu Technical Review

Hideki Sakata
Fujitsu Limited, Platform Development
Division
Mr. Sakata is engaged in processor
development.

Takeo Nakamura
Fujitsu Limited, Platform Development
Division
Mr. Nakamura is engaged in processor
development.

Takeshi Ishibashi
Fujitsu Limited, Platform Development
Division
Mr. Ishibashi is engaged in processor
development.

Yuichiro Ajima
Fujitsu Limited, Platform Development
Division
Dr. Ajima is engaged in architecture
development.

This article first appeared in Fujitsu Technical
Review, one of Fujitsu’s technical information
media. Please check out the other articles.

Fujitsu Technical Review

https://www.fujitsu.com/global/technicalreview/

https://www.fujitsu.com/global/technicalreview/

