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1. Introduction
The A64FX (Figure 1) was developed as a proces-

sor for the supercomputer Fugaku (hereafter, Fugaku). 
Fugaku features 158,976 processors [2]. These proces-
sors require high performance, high-density packaging, 
and low power consumption, all at high levels. The 
software development environment is also important.

This article outlines the A64FX and describes its 
high-performance microarchitecture, architecture to 
achieve high-density packaging, and low power con-
sumption design.

2. A64FX overview and adoption of Arm 
architecture
For the A64FX, we decided to work on devel-

opment with the aim of achieving the capability of 
higher-speed application execution based on the mi-
croarchitectures of processors developed by Fujitsu up 
to now, including the processor of the K computer.

In order to accelerate application performance, we 
analyzed various applications and optimized the entire 
processor, revising the configuration of various blocks, 
optimizing resources, adding new circuits, selecting 
and optimizing memory components, and optimizing 
OS operations. In addition, we implemented measures 
to save power across a wide range of levels from the 

architecture to the device level with the aim of providing 
a system that uses the A64FX, a general-purpose CPU, 
with the capability of achieving performance per power 
equivalent to that of a system equipped with a GPU.

Figure 2 shows a block diagram of the A64FX 
CPU [3]. There are four core memory groups (CMGs), 
each of which is composed of 13 cores (12 used as 
computing cores and one as an assistant core), level 2 
cache and memory controller, and a ring bus network 
on a chip (NoC) is used to connect them with the Tofu 
Interconnect D (hereafter, TofuD) [4] interface and PCI 
Express (PCIe) interface.

In developing the A64FX, the Arm architecture 
was adopted with the aim of having the supercomputer 
Fugaku accepted by a wider range of software develop-
ers than the K computer, which saw a full-scale launch 
in 2012, and putting in place an environment allowing 
use of the latest software. The Arm architecture is an in-
struction set developed by Arm Limited (hereafter, Arm) 
widely used in software development for smartphones 
and embedded devices. Recently, Arm processors for 
servers have appeared by extension to a 64-bit archi-
tecture, which is the standard in the server sector, and 
new addition of the hypervisor extension feature for 
servers. These developments have raised expectations 
for expansion of Arm into the server sector.

The A64FX was developed as a processor for the supercomputer Fugaku. For the semiconduc-
tors, the 7- nm CMOS process technology of TSMC [1] has been used. For higher density, the 
Tofu interconnect D and the PCI Express controllers have been implemented in the CPU chip, 
and the high-bandwidth 3D stacked memory is integrated in the package. The A64FX employs 
the Arm architecture to improve the software development environment while inheriting 
Fujitsu’s proven high-performance microarchitecture. In addition, we worked on the specifica-
tion of Scalable Vector Extension (SVE) as a lead partner of Arm Limited, the result of which has 
been adopted. This article outlines the A64FX and describes its high-performance microarchi-
tecture, architecture to achieve high-density packaging, and low power consumption design.
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In offering the Arm architecture as a proces-
sor for high-performance computing (HPC), single 
instruction, multiple data (SIMD) extension, a unique 
feature of the Arm architecture, became an issue. This 
SIMD extension, known as the Advanced SIMD, is used 
for accelerating media processing and digital signal 

processing (DSP) for embedding and other applica-
tions. The SIMD length is 128 bits, the same as the K 
computer. This is shorter than 256 bits and 512 bits, 
the current trends for HPC CPUs, and was unsuitable 
for improving the computing performance per core. In 
addition, based on Fujitsu’s past experience in HPC de-
velopment, instructions useful for the HPC applications 
were also insufficient.

Therefore, by collaborating with Arm, Fujitsu 
contributed as a lead partner to the specification of 
Scalable Vector Extension (SVE) capable of high-speed 
execution of HPC applications including scientific com-
puting and AI, the result of which has been adopted for 
the A64FX.

3. High-performance microarchitecture
With the A64FX, microarchitecture exclusively for 

Fugaku was developed with the aim of speeding up the 
execution of user applications. This section outlines the 
microarchitecture and describes the elemental technol-
ogy utilized to make it a reality.

Figure 2
Block diagram of A64FX CPU.
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Die photo of A64FX CPU.
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3.1 Microarchitecture overview
Figure 3 shows the pipeline of the A64FX [3]. A 

core is composed of the instruction control unit, execu-
tion unit, and level 1 cache unit. The instruction control 
unit performs instruction fetch, instruction decode, 
instruction out-of-order processing control, and instruc-
tion completion control.

The execution unit is equipped with two fixed-
point functional units (EXA/EXB), two functional units 
for address computation and simple fixed-point arith-
metic (known as EAGA/EAGB for address calculation 
and EXC/EXD for fixed-point arithmetic), two floating-
point units for executing SVE instructions (FLA/FLB), 
and one predicate unit for executing predicate arith-
metic (PRX). Both floating-point units have a 512-bit 
SIMD configuration and can perform a floating-point 
multiply-accumulate operation every cycle. Therefore, 
each computing core is capable of 32 double-precision 
floating-point operations per cycle and use of all com-
puting cores in the chip allows 1,536 double-precision 
floating-point operations to be performed per cycle. 
With single-precision floating-point operations and 
half-precision floating-point operations, the number of 
operations that can be performed is twice and four times 
the number of double-precision floating-point opera-
tions, respectively. It operates at 1.8 GHz/2 GHz/2.2 GHz,  

although the operating frequency varies depending on 
the system in which it is installed.

The level 1 cache unit processes load/store in-
structions. Each core has a 64-KiB instruction cache 
and a 64-KiB data cache. The data cache is configured 
to be capable of two simultaneous load accesses and 
executes two 64-byte SIMD loads or one 64-byte SIMD 
store.

The level 2 cache unit has 8 MiB of unified cache 
per CMG and is shared by 13 cores including the assis-
tant core.

3.2 Proven microarchitecture and resource 
optimization
For the A64FX, we have implemented various 

types of hardware resource optimization based on the 
high-performance, high-reliability microarchitecture 
adopted in mainframe, and UNIX servers, and the K 
computer, which Fujitsu previously developed.

In particular, for the numbers of reorder buffer 
(ROB), reservation station, and other queues, which 
are important as performance indicators, we have ad-
opted control to accelerate the release by judging the 
release timing of the queue at the time of instruction 
execution. This ensures the instruction execution per-
formance without unnecessarily increasing the number 

Figure 3
Diagram of A64FX pipeline.
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of queue entries, which reduces the chip area by curb-
ing the increase of logic circuits.

3.3 Branch prediction circuits
We have employed several branch prediction 

circuits so that optimum branch prediction can be per-
formed with various applications.

For example, we have employed a circuit that uses 
a piecewise linear algorithm to perform branch predic-
tion. This allows for high-accuracy branch prediction 
capability even with a program that has a compli-
cated instruction structure. As a result, it is possible 
to perform branch prediction based on an instruction 
execution history for a long time, and high prediction 
accuracy can be realized.

We have also adopted a circuit capable of branch 
prediction by detecting a simple loop or other program 
structure. By buffering the loop instruction sequence 
while the program is looping, operation of the instruc-
tion fetch unit and other branch prediction circuits is 
stopped to reduce power.

3.4 Virtual fetch/store port circuit
A fetch/store port used in load/store instructions 

is a queue located in the later stage of the pipeline. 
Therefore, several cycles are required from the release 
notification to the decoder unit that manages the re-
source to the actual use of the released entries. When 
the resource is full, decoding of instructions including 
those that do not use the fetch/store port stops and 
some measures were required to deal with SVE instruc-
tions, which use many fetch/store ports.

To resolve this issue, we decided to provide the 
A64FX with the support of the virtual fetch/store port func-
tion to improve the use efficiency of fetch/store ports with 
the minimum circuit scale for improving performance.

Previously, the instruction decoder was used for 
fetch/store port resource management. With the A64FX, 
however, we have allocated a larger number of virtual 
fetch/store ports than that of the actual fetch/store 
ports for the instruction decoder and assigned resource 
management of the fetch/store ports to the reserva-
tion station used for load/store-based instructions. This 
prevents instruction decoding from being stopped even 
when all fetch/store ports are in use, which has proved 
to provide an effect equivalent to increasing the num-
ber of fetch/store port entries.

3.5 Level 1 data cache to support various 
access patterns
In order to maximize the efficiency of 512-bit 

SIMD, it is important to maintain the access throughput 
of the L1 data cache in load instructions that transfer 
data to registers. When load instructions with addresses 
not on 512-bit boundaries are sequentially executed in 
the order of address, access across cache lines occurs 
once in several instructions. To avoid performance deg-
radation in this case, the L1 data cache of the A64FX 
is configured to allow each of the two lead ports to 
always access two consecutive cache lines. Thus, even 
when a load instruction accesses across a cache line, 
a throughput of 512 bits x 2 is maintained every cycle.

3.6 Accelerate throughput performance of 
gather-load instruction
A gather-load instruction reads discontinuous 

multiple-element data from the memory and writes 
it to one register. Although the data are discontinu-
ous, with HPC applications, it has been made clear 
that data have locality, as in multiple elements ac-
cessing close addresses. Based on this feature, a 
accelerate mechanism called combined gather has 
been employed for the A64FX. The combined gather 
mechanism disassembles a gather-load instruction 
into groups of two elements instead of processing the 
elements one by one. When the elements belong-
ing to the same group access the memory within the 
same 128-byte boundary, the process is completed 
by one cache access. As a result, double throughput 
performance has been realized in comparison with 
processing one element at a time.

3.7 Prefetch mechanism
Accessing the main storage and a lower-level 

cache requires a significant amount of time and. To 
improve the program performance, prefetching is im-
portant to hide the access time. Methods of realizing 
prefetching can be roughly classified into software-
based and hardware-based methods.
1) Software prefetch

The A64FX supports the SVE contiguous prefetch 
instruction and the SVE gather prefetch instruction of 
SVE in addition to the ARMv8 prefetch instruction, the 
normal prefetch instruction. As a result, a prefetch over 
multiple cache lines is also issued by one instruction.
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2) Hardware prefetch
The hardware prefetch mechanism of the A64FX 

has two modes: the stream detect mode and the 
prefetch injection mode.

In the stream detect mode, prefetches are issued 
for sequential access. It uses a special mechanism 
called a prefetch queue to monitor memory access and, 
when a sequential access stream is detected, prefetches 
are issued in the direction of the address sequence.

In the prefetch injection mode, prefetches are 
issued for addresses at a certain distance from the 
memory access. Programs using this mode can issue 
prefetches for strided access to access addresses at a 
certain distance by setting information on prefetch 
addresses in advance in a dedicated prefetch control 
register.

4. High-density architecture
To achieve higher density, the A64FX—which is 

a system on a chip (SoC) integrating various control-
lers—has four high bandwidth memories (HBM2) in 
the package. Each of the four CMGs is connected to 

the respective HBM2 to ensure low latency and high 
bandwidth.

4.1 CMG configuration and ccNUMA
Figure 4 shows the CMG configuration and a con-

nection diagram [5]. The CMG is composed of 13 cores, 
a level 2 cache shared by those cores, and a memory 
controller.

The capacity of the level 2 cache is 8 MiB per CMG, 
and two level 2 cache banks and 13 cores are con-
nected by crossbars. The level 2 cache has a function 
to guarantee the cache coherence of the entire chip so 
that the software can treat the CMG as a non-uniform 
memory access (NUMA) node.

Cache coherence in the A64FX is centrally man-
aged by a level 2 cache pipeline without using a 
general home agent mechanism. The level 2 cache 
pipeline consists of one pipeline: the first half is called 
the local pipeline and the second half the global pipe-
line. The directory information for managing cache 
coherence between CMGs is stored in a part called TAG 
Directory (TAGD) and accessed in the global pipeline. If 

Figure 4
Diagram of CMG configuration and connection.
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coherence management closed in the CMG is possible, 
response to the cores is initiated at the end of the local 
pipeline and, if not, coherence management between 
CMGs is initiated at the end of the global pipeline 
that follows. This configuration reduces the hardware 
resources requirement and realizes a low-latency 
cache-coherent NUMA (ccNUMA) system.

4.2 SoC architecture
Figure 5 shows connections between CMGs [4]. 

Four CMGs, a TofuD/PCIe controller and an interrupt 
controller are connected by two ring buses and six 
ring stops. The A64FX also employs a proprietary NoC 
topology with CMG interconnect paths for connect-
ing between adjacent CMGs. The throughput of the 
ring buses and CMG interconnect paths is more than 
115 GB/s each.

Provision of the CMG interconnect paths makes it 
possible to avoid the effect of use of ring buses due to 
data transfer with TofuD network and I/O, and interrupt 
requests from the interrupt controller, etc. It also realizes 

a configuration with a smaller number of connections 
between blocks than use of a crossbar, ensuring the 
throughput performance between adjacent CMGs.

4.3 HBM2 and memory controller
The A64FX uses HBM2, which is a 3D stacked 

memory with much higher bandwidth than DDR4 
DIMMs used in general servers. The memory controller 
developed exclusively for HBM2 is housed in the pro-
cessor and the CPU chip and HBM2 are integrated into 
a single package using the 2.5D packaging technology 
to ensure low latency and high memory bandwidth 
of 1,024 GB/s. With the memory controller developed 
exclusively for HBM2, we have optimized the control 
method to maximize the performance in accordance 
with the characteristics of HBM2 memory while ensur-
ing strong reliability equivalent to that of a mainframe.

4.4 TofuD and PCIe controllers
As external input/output interfaces, the A64FX 

has a TofuD for realizing a massively parallel system by 
mutually connecting CPUs and a PCIe bus for connecting 
I/O devices. The TofuD has 20 lanes of high-speed serial 
signals of 28-Gbps transmission speed and interconnects 
up to 10 CPUs with a bandwidth of 6.8 GB/s. The PCIe has 
16 lanes of high-speed serial signals of 8-Gbps transmis-
sion speed and the bandwidth is 16 GB/s.

Figure 6 shows a block diagram of TofuD. The 
TofuD has six network interfaces called TNIs and in-
terconnects with 10 CPUs through a network router.  

Figure 5
Diagram of connections between CMGs.
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The network of TofuD has a 6D mesh/torus topology 
as with the K computer [6-8]. While the node address 
of the network is physically 6D, a user process is given 
virtual 3D coordinates to allow use of a conventional 
communication algorithm for 3D connection. As with 
the K computer, the communication function of the 
TofuD is also equipped with remote direct memory ac-
cess (RDMA) communication and barrier-synchronized 
communication as the functions that can be used 
directly from a user process and system packet com-
munication as the function used by the system for IP 
packet transfer. In terms of the types of RDMA commu-
nication, atomic read-modify-write, which is extended 
by Tofu2 [9] after the K computer, is supported in ad-
dition to put and get in the same way as with the K 
computer. The RDMA communication of Tofu has its 
own virtual storage and transfers data directly between 
the virtual address spaces of user processes managed 
by the OS of the respective nodes. Each data transfer 
is assigned a global process ID and is protected to refer 
only to processes executed by the same parallel pro-
gram. In comparison with the conventional K computer 
and Tofu2, TofuD has a greater number of simultane-
ous communications and enhanced fault tolerance and 
barrier-synchronized communication. The following 
describes the respective enhancements.
1) Roughly twice as much total communication 

bandwidth
Most collective communication algorithms opti-

mized for 3D connections communicate simultaneously 
in six directions in three dimensions. However, the 
number of network interfaces was conventionally four 
and simultaneous communication was possible in 
only up to four directions. With TofuD, the number of 
network interfaces has been increased to six, which 
has allowed a communication algorithm to be used 
that realizes high bandwidth by simultaneously com-
municating in three directions in three dimensions. The 
total bandwidth of simultaneous communication has 
been enhanced from 20 GB/s with the K computer to 
40.8 GB/s.
2) High fault tolerance

With the K computer, errors were detected for 
each link to the adjacent node and the data was 
retransmitted. In addition, a link with high error detec-
tion frequency was disconnected. With Tofu2, a link 
that was disconnected was subsequently automatically 

reconnected with the number of the lanes reduced to 
half. If the number was already reduced to half, the 
link was reconnected by using different lanes, but no 
means was implemented to automatically recover the 
number of lanes.

In contrast, TofuD has been equipped with a 
function for reducing the bandwidth when the error 
detection frequency is high and restoring the reduced 
bandwidth when the error detection frequency is re-
duced. Specifically, when the error detection frequency 
is high, the function transfers the same data by two 
lanes while maintaining the link to improve fault toler-
ance. And when the error detection frequency is low, it 
restores the mode of using the lanes to transfer differ-
ent data to recover the bandwidth.
3) Six barrier-synchronized communications

Along with the introduction of CMGs, the number 
of resources for barrier-synchronized communication 
have been increased to expand the number of con-
traction operation elements. While one of the four 
network interfaces was conventionally used for bar-
rier-synchronized communication, with TofuD, all six 
network interfaces perform barrier-synchronized com-
munication. Conventionally, contraction operation was 
possible for one element per barrier synchronization, 
regardless of data type. But with TofuD, contraction op-
eration is possible for eight integer elements or three 
floating point number elements.

5. Low power consumption design
In terms of low power consumption, measures 

have been taken to save power across a wide range of 
levels from the architecture level to the device level.

5.1 Architecture-level power saving
Most of the application operations can now be lo-

calized in a CMG by grouping the computing cores and 
directly connecting the memory to each group and by 
avoiding process mapping across groups. As a result, 
the average distance travelled by data is shortened, 
leading to reduced power.

5.2 Circuit-level power saving
In order to support 512-bit SIMD, the access 

method of the level 1 data cache was reviewed. Since 
throughput is more dominant than latency in the per-
formance of applications that heavily use SVE vector 
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load, SVE load instructions employ a scheme that can 
significantly reduce power when accessing the level 1 
data cache by slightly increasing latency.

We also reviewed the data forwarding circuit in 
the arithmetic pipeline and added a circuit to reduce 
power consumption by reducing reference to the regis-
ter file with large power consumption.

6. Conclusion
This article described the high performance, high-

density packaging, and low power consumption design 
of the A64FX.

The A64FX was developed with the aim of sig-
nificantly improving the performance per power of a 
wide range of applications. Fujitsu has moved ahead 
with co-design together with the RIKEN Center for 
Computational Science. Different teams for processor de-
velopment, system development, software development, 
compiler development, and performance evaluation 
have collaborated closely to successfully develop new 
technologies, advance conventional technologies, and 
achieve the goal.

We expect that the supercomputer Fugaku will 
contribute to the resolution of issues in various fields 
in the future and that the A64FX will be accepted by a 
wide range of software developers to accelerate DX.

All company and product names mentioned herein are trademarks or 
registered trademarks of their respective owners.
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